Velocity distribution in active particles systems
نویسندگان
چکیده
We derive an analytic expression for the distribution of velocities of multiple interacting active particles which we test by numerical simulations. In clear contrast with equilibrium we find that the velocities are coupled to positions. Our model shows that, even for two particles only, the individual velocities display a variance depending on the interparticle separation and the emergence of correlations between the velocities of the particles. When considering systems composed of many particles we find an analytic expression connecting the overall velocity variance to density, at the mean-field level, and to the pair distribution function valid in the limit of small noise correlation times. Finally we discuss the intriguing analogies and main differences between our effective free energy functional and the theoretical scenario proposed so far for phase-separating active particles.
منابع مشابه
Numerical Study of Heat Transfer and Aerosol Deposition in a Room Environment with Under-floor or Baseboard Heating Systems
In this study, heat transfer and aerosol deposition in the under-floor and baseboard heating systems have been investigated, numerically. The aim of this study is a comparison between these heating systems. This comparison obtains the optimal heating system with low suspended particles in the air. Computational fluid dynamic with Eulerian-Lagrangian method has been used to simulate fluid and pa...
متن کاملPrediction of Minimum Spout Velocity and Moisture Distribution of Ammonium Perchlorate Particles in a Spouted Bed Dryer
Ammonium perchlorate particles have been dried in a laboratory spouted bed dryer (screen-bottomed type) which is categorized as a fluidized bed dryer. The solid particles obtained in this process of drying were semi-porous and known as the group D of Geldart classification. The variations of moisture content with resident time, the effects of bed height on the pressure dro...
متن کاملA Lattice-Boltzmann model for suspensions of self-propelling colloidal particles.
We present a Lattice-Boltzmann method for simulating self-propelling (active) colloidal particles in two dimensions. Active particles with symmetric and asymmetric force distribution on their surface are considered. The velocity field generated by a single active particle, changing its orientation randomly, and the different time scales involved are characterized in detail. The steady-state spe...
متن کاملLaminar Flame Speed Prediction in Lean Mixture of Aluminum Dust Clouds by Considering the Effect of Random Distribution of Particles in Two-dimension
In the present study, the effect of random distribution of reactants and products on laminar, 2D and steady-state flame propagation in aluminium particles has been investigated. The equations are solved only for lean mixture. The flame structure is assumed to consist of a preheat zone, a reaction zone and a post flame zone. It is presumed that in the preheat zone particles are heated an...
متن کاملNon-Equilibruim Molecular Dynamics Simulation of Poiseuille Flow in a Nanochannel
The numerical simulation of a Poiseuille flow in a narrow channel using the molecular dynamics simulation (MDS) is performed. Poiseuille flow of liquid Argon in a nanochannel is simulated by embedding the fluid particles in a uniform force field. Density, velocity and Temperature profiles across the channel are investigated. When particles will be inserted into the flow, it is expected that the...
متن کامل